8 research outputs found

    Risk and Cost Assessment of Nitrate Contamination in Domestic Wells

    Get PDF
    This study combines empirical predictive and economics models to estimate the cost of remediation for domestic wells exceeding suggested treatment thresholds for nitrates. A multiple logistic regression model predicted the probability of well contamination by nitrate, and a life cycle costing methodology was used to estimate costs of nitrate contamination in groundwater in two areas of Nebraska. In south-central Nebraska, 37% of wells were estimated to be at risk of exceeding a threshold of 7.5 mg/L as N, and 17% were at risk of exceeding 10 mg/L as N, the legal limit for human consumption in the United States. In an area in northeastern Nebraska, 82% of wells were at risk of exceeding the 10 mg/L as N legal threshold. Reverse osmosis Point-of-Use (POU) treatment was the option with the lowest costs for a household (3–4 individuals), with an average of 4–4–164 total regional cost per household per year depending on the threshold for treatment. Ion exchange and distillation were the next most cost-effective options. At the community level (~10,000 individuals), a reverse osmosis Point-of-Entry (POE) treatment system was the most expensive option for a community due to high initial costs and ongoing operation and maintenance costs, whereas the biological denitrification system was least expensive due to economies of scale. This study demonstrates integrated modeling methods to assess water treatment costs over time associated with groundwater nitrate contamination, including quantification of at-risk wells, and identifies suitable options for treatment systems for rural households and communities based on their cost

    The long term effect of agricultural, vadose zone and climatic factors on nitrate contamination in Nebraska\u27s groundwater system

    Get PDF
    A four-decade dataset (1974–2013) of 107,823 nitrate samples in 25,993 wells from western and eastern parts of Nebraska was used to assess long-term trends of groundwater nitrate concentration and decadal changes in the extent of groundwater nitrate-contaminated areas (NO3-N≥10 mg N/L) over the entire state. Spatial statistics and regressions were used to investigate the relationships between groundwater nitrate concentrations and several potential natural and anthropogenic factors, including soil drainage capacities, vadose zone characteristics, crop production areas, and irrigation systems. The results of this study show that there is no statistically significant trend in groundwater nitrate concentrations in western Nebraska, in contrast with the increasing trend (p \u3c .05) to the east. The spatial extent and nitrate concentrations in contaminated groundwater in center pivot-irrigated areas was less than in gravity-irrigated areas. Areas with a thicker vadose zone and larger saturated thickness of the aquifer have relatively lower nitrate concentrations. The results of a classification and regression tree (CART) model indicate the difference in the influence of physical factors on groundwater nitrate concentrations between western and eastern Nebraska, namely that groundwater nitrate concentrations correspond with vadose zone thickness, effective hydraulic conductivity, and saturated thickness in the west, while in eastern Nebraska, concentrations are correlated with average percent sand in the topsoil (0–150 cm), well depth, and effective hydraulic conductivity

    Risk and Cost Assessment of Nitrate Contamination in Domestic Wells

    Get PDF
    This study combines empirical predictive and economics models to estimate the cost of remediation for domestic wells exceeding suggested treatment thresholds for nitrates. A multiple logistic regression model predicted the probability of well contamination by nitrate, and a life cycle costing methodology was used to estimate costs of nitrate contamination in groundwater in two areas of Nebraska. In south-central Nebraska, 37% of wells were estimated to be at risk of exceeding a threshold of 7.5 mg/L as N, and 17% were at risk of exceeding 10 mg/L as N, the legal limit for human consumption in the United States. In an area in northeastern Nebraska, 82% of wells were at risk of exceeding the 10 mg/L as N legal threshold. Reverse osmosis Point-of-Use (POU) treatment was the option with the lowest costs for a household (3–4 individuals), with an average of 4–4–164 total regional cost per household per year depending on the threshold for treatment. Ion exchange and distillation were the next most cost-effective options. At the community level (~10,000 individuals), a reverse osmosis Point-of-Entry (POE) treatment system was the most expensive option for a community due to high initial costs and ongoing operation and maintenance costs, whereas the biological denitrification system was least expensive due to economies of scale. This study demonstrates integrated modeling methods to assess water treatment costs over time associated with groundwater nitrate contamination, including quantification of at-risk wells, and identifies suitable options for treatment systems for rural households and communities based on their cost

    Occurrence of Nitrate in the Nebraska\u27s Groundwater System: Identifying Factors, Examining the Best Management Practices, and Analyzing Costs

    No full text
    Nebraska, an agriculturally intensive mid-western state of the United States (U.S.), has a large number of wells with nitrate concentrations above the drinking water standard (10 mg NO3-N/L). Large amounts of nitrogen fertilizers and irrigation water are applied in Nebraska to increase and maintain agricultural production. Consequently, nitrate contamination in Nebraska’s groundwater continues to occur from leaching through the vadose zone. Understanding the occurrence of nitrate in the Nebraska’s groundwater system and the protection of groundwater from contamination is among the challenges in the conservation of Nebraska’s drinking water resources. ^ The objectives of this research were to identify the influential factors associated with groundwater nitrate concentrations in Nebraska using the Classification and Regression Tree (CART) model, examine Best Management Practices (BMPs) and climatic scenarios affecting soil water and nitrate-N transport in the deep vadose zone using the Root Zone Water Quality Model (RZWQM2), and assess costs of nitrate contamination in Nebraska’s domestic wells using the Multiple Logistic Regression Model (MLRM) and Life Cycle Costing (LCC). ^ The results of the CART model indicated that groundwater nitrate concentrations correspond with vadose zone thickness, hydraulic conductivity, and saturated thickness in the west. In eastern Nebraska, concentrations are correlated with average percent sand in the topsoil (0-150 cm), well depth, and hydraulic conductivity. ^ Using RZWQM2 to examine the BMPs and climatic scenarios, the results indicated that the conversion of gravity to sprinkler irrigation can reduce nitrate-N losses to groundwater. Rotating corn and soybean is an efficient management practice to lower nitrate-N concentrations in the deep vadose zone, compared with continuous corn. Transitioning from dryland production to irrigation can lead to increased nitrate-N concentrations. Splitting nitrogen fertilizer application can reduce nitrate-N losses to groundwater. Nitrate-N transport in the deep vadose zone is higher at the irrigated site than non-irrigated site under the future climatic scenarios. ^ The results of assessing costs of nitrate contamination in domestic wells indicated that a reverse osmosis Point-of-Use (POU) treatment is the option with the lowest costs for a household, but the biological denitrification Point-of-Entry (POE) treatment system is most likely to be suitable with lower treatment costs for a community.

    The long term effect of agricultural, vadose zone and climatic factors on nitrate contamination in Nebraska\u27s groundwater system

    Get PDF
    A four-decade dataset (1974–2013) of 107,823 nitrate samples in 25,993 wells from western and eastern parts of Nebraska was used to assess long-term trends of groundwater nitrate concentration and decadal changes in the extent of groundwater nitrate-contaminated areas (NO3-N≥10 mg N/L) over the entire state. Spatial statistics and regressions were used to investigate the relationships between groundwater nitrate concentrations and several potential natural and anthropogenic factors, including soil drainage capacities, vadose zone characteristics, crop production areas, and irrigation systems. The results of this study show that there is no statistically significant trend in groundwater nitrate concentrations in western Nebraska, in contrast with the increasing trend (p \u3c .05) to the east. The spatial extent and nitrate concentrations in contaminated groundwater in center pivot-irrigated areas was less than in gravity-irrigated areas. Areas with a thicker vadose zone and larger saturated thickness of the aquifer have relatively lower nitrate concentrations. The results of a classification and regression tree (CART) model indicate the difference in the influence of physical factors on groundwater nitrate concentrations between western and eastern Nebraska, namely that groundwater nitrate concentrations correspond with vadose zone thickness, effective hydraulic conductivity, and saturated thickness in the west, while in eastern Nebraska, concentrations are correlated with average percent sand in the topsoil (0–150 cm), well depth, and effective hydraulic conductivity

    Risk and Cost Assessment of Nitrate Contamination in Domestic Wells

    Get PDF
    This study combines empirical predictive and economics models to estimate the cost of remediation for domestic wells exceeding suggested treatment thresholds for nitrates. A multiple logistic regression model predicted the probability of well contamination by nitrate, and a life cycle costing methodology was used to estimate costs of nitrate contamination in groundwater in two areas of Nebraska. In south-central Nebraska, 37% of wells were estimated to be at risk of exceeding a threshold of 7.5 mg/L as N, and 17% were at risk of exceeding 10 mg/L as N, the legal limit for human consumption in the United States. In an area in northeastern Nebraska, 82% of wells were at risk of exceeding the 10 mg/L as N legal threshold. Reverse osmosis Point-of-Use (POU) treatment was the option with the lowest costs for a household (3–4 individuals), with an average of 4–4–164 total regional cost per household per year depending on the threshold for treatment. Ion exchange and distillation were the next most cost-effective options. At the community level (~10,000 individuals), a reverse osmosis Point-of-Entry (POE) treatment system was the most expensive option for a community due to high initial costs and ongoing operation and maintenance costs, whereas the biological denitrification system was least expensive due to economies of scale. This study demonstrates integrated modeling methods to assess water treatment costs over time associated with groundwater nitrate contamination, including quantification of at-risk wells, and identifies suitable options for treatment systems for rural households and communities based on their cost

    The long term effect of agricultural, vadose zone and climatic factors on nitrate contamination in Nebraska’s groundwater system

    Get PDF
    A four-decade dataset (1974–2013) of 107,823 nitrate samples in 25,993 wells from western and eastern parts of Nebraska was used to assess long-term trends of groundwater nitrate concentration and decadal changes in the extent of groundwater nitrate-contaminated areas (NO3-N≥10 mg N/L) over the entire state. Spatial statistics and regressions were used to investigate the relationships between groundwater nitrate concentrations and several potential natural and anthropogenic factors, including soil drainage capacities, vadose zone characteristics, crop production areas, and irrigation systems. The results of this study show that there is no statistically significant trend in groundwater nitrate concentrations in western Nebraska, in contrast with the increasing trend (p \u3c .05) to the east. The spatial extent and nitrate concentrations in contaminated groundwater in center pivot-irrigated areas was less than in gravity-irrigated areas. Areas with a thicker vadose zone and larger saturated thickness of the aquifer have relatively lower nitrate concentrations. The results of a classification and regression tree (CART) model indicate the difference in the influence of physical factors on groundwater nitrate concentrations between western and eastern Nebraska, namely that groundwater nitrate concentrations correspond with vadose zone thickness, effective hydraulic conductivity, and saturated thickness in the west, while in eastern Nebraska, concentrations are correlated with average percent sand in the topsoil (0–150 cm), well depth, and effective hydraulic conductivity

    Risk and Cost Assessment of Nitrate Contamination in Domestic Wells

    No full text
    This study combines empirical predictive and economics models to estimate the cost of remediation for domestic wells exceeding suggested treatment thresholds for nitrates. A multiple logistic regression model predicted the probability of well contamination by nitrate, and a life cycle costing methodology was used to estimate costs of nitrate contamination in groundwater in two areas of Nebraska. In south-central Nebraska, 37% of wells were estimated to be at risk of exceeding a threshold of 7.5 mg/L as N, and 17% were at risk of exceeding 10 mg/L as N, the legal limit for human consumption in the United States. In an area in northeastern Nebraska, 82% of wells were at risk of exceeding the 10 mg/L as N legal threshold. Reverse osmosis Point-of-Use (POU) treatment was the option with the lowest costs for a household (3–4 individuals), with an average of 4–4–164 total regional cost per household per year depending on the threshold for treatment. Ion exchange and distillation were the next most cost-effective options. At the community level (~10,000 individuals), a reverse osmosis Point-of-Entry (POE) treatment system was the most expensive option for a community due to high initial costs and ongoing operation and maintenance costs, whereas the biological denitrification system was least expensive due to economies of scale. This study demonstrates integrated modeling methods to assess water treatment costs over time associated with groundwater nitrate contamination, including quantification of at-risk wells, and identifies suitable options for treatment systems for rural households and communities based on their cost
    corecore